Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(3): 119, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538250

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor in urgent need of novel diagnostics, prognostic markers, and treatments. Eukaryotic translation initiation factor 2 subunits (EIF2Ss), comprising Eukaryotic translation initiation factor 2 subunit alpha (EIF2S1), Eukaryotic translation initiation factor 2 subunit beta (EIF2S2), and Eukaryotic translation initiation factor 2 subunit gamma (EIF2S3), is a family of eukaryotic initiation factors that participate in early protein synthesis and are crucial for tumor initiation and progression. However, the role of EIF2Ss in PAAD has yet to be reported. The aim of this study was therefore to analyze EIF2Ss in relation to the diagnosis, prognosis, and treatment of PAAD. METHODS: The cancer genome atlas (TCGA) database was used to investigate gene expression and patient survival. Gene alterations, immune cell infiltration, and immune checkpoints in PAAD were also evaluated. Univariate and multivariate analysis, nomograms, calibration curves, and Decision Curve Analysis (DCA) diagrams were used to develop and evaluate a prediction model for patient outcome. Single-cell RNA-seq (scRNA) analysis, functional enrichment, co-IP assay, mass spectrometry, and western blot were used to study the relationship between EIF2Ss and c-myc in PAAD. RESULTS: EIF2Ss are over-expressed in PAAD tissue and are associated with poor prognosis. The frequency of EIF2S1, EIF2S2, and EIF2S3 gene alteration in PAAD was 0.2%, 0.4%, and 0.2%, respectively. High EIF2Ss expression was associated with Th2 cell infiltration, whereas low expression was associated with pDC infiltration. Moreover, EIF2Ss expression was positively correlated with the expression of the NT5E, ULBP1, PVR, CD44, IL10RB, and CD276 checkpoints. A prediction model developed using EIF2Ss and important clinicopathologic features showed good predictive value for the overall survival of PAAD patients. ScRNA-Seq data showed that EIF2Ss was associated with enrichment for endothelial cells, fibroblasts, malignant cells, and ductal cells. EIF2Ss expression was also correlated with adipogenesis, interferon-alpha response, epithelial-mesenchymal transition, myc targets, G2M checkpoint, oxidative phosphorylation, and hypoxia. Functional enrichment analysis of EIF2Ss showed a close correlation with the myc pathway, and interactions between EIF2Ss and c-myc were confirmed by co-IP assay and mass spectrometry. Importantly, knockdown of c-myc decreased the expression of EIF2S1, EIF2S2, and EIF2S3 in PAAD cells. CONCLUSIONS: EIF2Ss were found to have significant clinical implications for the prognosis and treatment of PAAD. Inhibition of c-myc caused the downregulation of EIF2S1, EIF2S2, and EIF2S3 expression.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Células Endoteliais , Fator de Iniciação 2 em Procariotos , Neoplasias Pancreáticas/genética , Genes myc/genética , Regulação Neoplásica da Expressão Gênica , Antígenos B7
2.
Artigo em Inglês | MEDLINE | ID: mdl-38502348

RESUMO

PURPOSE: Targeting inflammatory crosstalk between tumors and their microenvironment has emerged as a crucial method for suppressing pancreatic adenocarcinoma (PAAD) progression. Berberine (BBR) is a natural pentacyclic isoquinoline alkaloid known for its anti-inflammatory and antitumor pharmacological effects; however, the mechanism underlying PAAD suppression remains unclear. We aim to investigate the effects of BBR on PAAD progression and their underlying mechanisms. METHODS: The prognostic value of inflammation-related genes in PAAD was assessed using bioinformatics analyses, then the pharmacological effects and potential mechanisms of BBR on PAAD will be investigated in silico, in vitro, and in vivo. RESULTS: Fifty-eight prognostic inflammation-related genes were identified in PAAD, which were shown to have good sensitivity and specificity using a novel inflammation-related gene risk-prognosis prediction model. Among these, four candidate genes (CAPS3, PTGS2, ICAM1, and CXCR4) were predicted as targets of BBR in PAAD in silico. Molecular docking simulations showed that the four key targets docked well with BBR. Further BBR treatment suppressed cell proliferation, colony formation, and induced cell cycle arrest in vitro. Moreover, BBR exhibited a significant tumor-suppressive effect in murine subcutaneous xenografts without macroscopic hepatic and renal toxicities. In addition, BBR downregulated CAPS3, PTGS2, ICAM1, and CXCR4 protein expression. CONCLUSION: This study not only elucidated the prognostic value of inflammation-related genes in PAAD but also demonstrated the potential of BBR to inhibit PAAD by targeting these genes.

3.
Pathol Res Pract ; 254: 155046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266456

RESUMO

BACKGROUND: The DIAPHs (DIAPH1, DIAPH2, and DIAPH3) are members of the diaphanous subfamily of the formin family. KIF20B and MET, hub genes of DIAPHs, play crucial roles in cytoskeletal remodeling, cell migration, and adhesion. However, their combined prognostic and treatment value in pancreatic adenocarcinoma (PC) warrants further investigation. METHODS: Multiomics analysis tools were used to comprehensively assess the genomic expression and prognostic value of KIF20B and MET in PC. Immune cell infiltration, functional enrichment, single-cell RNA-seq (scRNA) analysis, potential therapeutic drugs, and nomograms were established and analyzed. CCK-8 levels, transwell assay, Co-IP assay, mass spectrometry, and western blotting were performed to assess the role of KIF20B and MET as modulators of ß-catenin and Lactate Dehydrogenase A (LDHA) in vitro. Xenograft tumor models were used to evaluate the anti-tumor effects in vivo. RESULTS: DIAPHs, KIF20B, and MET were overexpressed and functioned as poor prognostic markers of PC. Immunoinfiltration analysis revealed that pDC and NK cells were enriched with low expression levels of KIF20B and MET, whereas Th2 cells were enriched with high expression levels of these two genes. The copy number variations (CNVs) in KIF20B and MET were positively correlated with B cell and CD4 + T cell infiltration. Immunological checkpoints NT5E and CD44 were positively correlated with KIF20B and MET expression. Moreover, the nomogram constructed based on KIF20B and MET demonstrated predictive value for overall survival. scRNA-Seq analysis indicated that KIF20B and MET were enriched in endothelial, malignant, B, T, and CD8 + T cells, which correlated with glycolysis and the epithelial-mesenchymal transition (EMT). The interactions of KIF20B and MET with ß-catenin and LDHA were verified by Co-IP assay and mass spectrometry. Knockdown of KIF20B and MET downregulates ß-catenin and LDHA in vitro. Furthermore, dual knockdown of KIF20B and MET exhibited a synergistic suppressive effect on PC progression in vitro and in vivo. CONCLUSION: DIAPHs, KIF20B, and MET are promising candidates for the prognosis and treatment of PC. More importantly, downregulation of KIF20B and MET inhibited pancreatic cancer progression by regulating LDHA and EMT.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , beta Catenina/metabolismo , Adenocarcinoma/genética , Variações do Número de Cópias de DNA , Linhagem Celular Tumoral , Processos Neoplásicos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Forminas/genética , Forminas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo
4.
Mol Med ; 29(1): 47, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016317

RESUMO

BACKGROUND: Protein kinases play a pivotal role in the malignant evolution of pancreatic cancer (PC) through mediating phosphorylation. Many kinase inhibitors have been developed and translated into clinical use, while the complex pathology of PC confounds their clinical efficacy and warrants the discovery of more effective therapeutic targets. METHODS: Here, we used the Gene Expression Omnibus (GEO) database and protein kinase datasets to map the PC-related protein kinase-encoding genes. Then, applying Gene Expression and Profiling Interactive Analysis (GEPIA), GEO and Human Protein Atlas, we evaluated gene correlation, gene expression at protein and mRNA levels, as well as survival significance. In addition, we performed protein kinase RIPK2 knockout and overexpression to observe effects of its expression on PC cell proliferation, migration and invasion in vitro, as well as cell apoptosis, reactive oxygen species (ROS) production and autophagy. We established PC subcutaneous xenograft and liver metastasis models to investigate the effects of RIPK2 knockout on PC growth and metastasis. Co-immunoprecipitation and immunofluorescence were utilized to explore the interaction between protein kinases RIPK2 and PRKCI. Polymerase chain reaction and immunoblotting were used to evaluate gene expression and protein phosphorylation level. RESULTS: We found fourteen kinases aberrantly expressed in human PC and nine kinases with prognosis significance. Among them, RIPK2 with both serine/threonine and tyrosine activities were validated to promote PC cells proliferation, migration and invasion. RIPK2 knockout could inhibit subcutaneous tumor growth and liver metastasis of PC. In addition, RIPK2 knockout suppressed autophagosome formation, increased ROS production and PC cell apoptosis. Importantly, another oncogenic kinase PRKCI could interact with RIPK2 to enhance the phosphorylation of downstream NF-κB, JNK and ERK. CONCLUSION: Paired protein kinases PRKCI-RIPK2 with multiple phosphorylation activities represent a new pathological mechanism in PC and could provide potential targets for PC therapy.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Proteína Quinase C , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Humanos , Linhagem Celular Tumoral , Neoplasias Hepáticas/secundário , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Quinase C/genética , Animais , Neoplasias Pancreáticas
5.
Front Oncol ; 12: 947238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957897

RESUMO

Background: Damp-heat syndrome is one of the most important syndrome types in the traditional Chinese medicine (TCM) syndrome differentiation and treatment system, as well as the core pathogenesis of pancreatic cancer (PC) which remains a challenge to medical researchers due to its insidious onset and poor prognosis. Great attention has been given to the impact of damp-heat syndrome on tumorigenesis and progression, but less attention has been given to damp-heat modeling per se. Studying PC in a proper damp-heat syndrome animal model can recapitulate the actual pathological process and contribute to treatment strategy improvement. Methods: Here, an optimized damp-heat syndrome mouse model was established based on our prior experience. The Fibonacci method was applied to determine the maximum tolerated dosage of alcohol for mice. Damp-heat syndrome modeling with the old and new methods was performed in parallel of comparative study about general appearance, food intake, water consumption and survival. Major organs, including the liver, kidneys, lungs, pancreas, spleen, intestines and testes, were collected for histological evaluation. Complete blood counts and biochemical tests were conducted to characterize changes in blood circulation. PC cells were subcutaneously inoculated into mice with damp-heat syndrome to explore the impact of damp-heat syndrome on PC growth. Hematoxylin-eosin staining, Masson staining and immunohistochemistry were performed for pathological evaluation. A chemokine microarray was applied to screen the cytokines mediating the proliferation-promoting effects of damp-heat syndrome, and quantitative polymerase chain reaction and Western blotting were conducted for results validation. Results: The new modeling method has the advantages of mouse-friendly features, easily accessible materials, simple operation, and good stability. More importantly, a set of systematic indicators was proposed for model evaluation. The new modeling method verified the pancreatic tumor-promoting role of damp-heat syndrome. Damp-heat syndrome induced the proliferation of cancer-associated fibroblasts and promoted desmoplasia. In addition, circulating and tumor-located chemokine levels were altered by damp-heat syndrome, characterized by tumor promotion and immune suppression. Conclusions: This study established a stable and reproducible murine model of damp-heat syndrome in TCM with systematic evaluation methods. Cancer associated fibroblast-mediated desmoplasia and chemokine production contribute to the tumor-promoting effect of damp-heat syndrome on PC.

6.
Front Oncol ; 11: 804685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976843

RESUMO

INTRODUCTION: Cisplatin, a chemotherapeutic drug, is widely used for the treatment of various malignant tumors with good effects. However, cisplatin-induced nephrotoxicity is a major dose-limiting factor and a significant adverse event. Mannitol is used to reduce cisplatin-induced nephrotoxicity, which is controversial. This study aimed to evaluate the efficacy and safety of a hydration regimen containing mannitol against cisplatin-induced nephrotoxicity through a meta-analysis. METHODS: Potential records from PubMed, EMBASE, Cochrane Library, and ClinicalTrials that met the inclusion criteria were included from inception to May 2021. Cochrane Collaboration tools were used to assess the risk of bias in the included studies. Jadad's and NOS scores were applied to assess the quality of randomized controlled trials (RCTs) and case-control studies. A random-effects model or fixed-effects model was used depending on the heterogeneity. Subgroup analyses were performed to evaluate the potential study characteristics. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were evaluated. RESULTS: Four RCTs and seven case-control studies involving 4168 patients were included. Pooled results showed that mannitol use could reduce the incidence of cisplatin-induced nephrotoxicity (OR = 0.66, 95% CI [0.45-0.97], p = 0.03), especially reducing grade 3 nephrotoxicity events according to CTCAE 4.0 (OR = 0.37,95% CI [0.16-0.84]). Moreover, mannitol use was not significantly associated with creatinine clearance, serum creatine, and electrolyte disturbance (p > 0.05). Gastrointestinal cancer (OR = 0.36, 95% CI [0.15-0.83], p = 0.02) and urinary tract cancer (OR = 0.32,95% CI [0.14-0.73], p = 0.007) may be more sensitive to mannitol, although the test for overall effect was significantly different (OR = 0.66, 95% CI [0.49-0.89], p = 0.007). For patients with diabetes and hypertension, mannitol may worsen renal function (OR = 1.80, 95% CI [1.18-2.72], p = 0.006; OR = 2.19, 95% CI [1.50, 3.19], p < 0.0001, respectively). Mannitol may have a better protective effect when doses of mannitol were ≥ 25 g (OR = 0.58, 95% CI [0.39-0.88], p = 0.01) and doses of cisplatin < 75 mg/m2 (OR = 0.59, 95% CI [0.36-0.94], p = 0.03). It revealed that mannitol use was likely to cause nausea or vomiting (OR = 1.86, 95% CI [1.20-2.89], p = 0.006). CONCLUSION: Current evidence revealed that mannitol was an effective and safe drug to reduce cisplatin-induced nephrotoxicity events, especially Grade 3 events. However, it may cause more nausea/vomiting events and deteriorate renal function in patients with diabetes or hypertension. We also found that mannitol had the best effect when mannitol was ≥ 25 g in total or cisplatin was < 75 mg/m2. Meanwhile, mannitol may have a better effect on gastrointestinal and urinary tract cancers. SYSTEMATIC REVIEW REGISTRATION: crd. york. ac. uk/PROSPERO, CRD 42021253990.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...